
Using Slow Feature Analysis to Extract Behavioural

Manifolds Related to Humanoid Robot Postures
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Abstract

This paper demonstrates how Slow Feature
Analysis (SFA), an unsupervised learning al-
gorithm stemming from the domain of the-
oretical biology, can be used to extract be-
havioural manifolds related to a humanoid
robot’s body postures. On one hand, we
show that SFA detects abstract semantic fea-
tures, encoding high-level behaviours, which
can be used for representation making and
the classification of the robot’s posture; on the
other hand we propose a method for analysing
the obtained SFA components in terms of
the manifold that contains the robot’s sen-
sory states belonging to the detected pos-
tures. This allows further characterisation of
the SFA results as well as a possible means
for directed exploration of the sensory state
space.

1. Introduction

The integration of a rich repertoire of sensory qual-
ities is indispensable for providing an embodied au-
tonomous agent with proprioceptive and exterocep-
tive perception. However, proper execution and
planning of complex cognitive and behavioural tasks
usually rely on high-dimensional and error-prone sen-
sory data. Therefore, the agent needs to extract rel-
evant information from the available data and ac-
quire an efficient, low-dimensional representation of
its morphological properties as well as its environ-
ment.

Computational models for learning and comput-
ing such representations are a current field of study,
and in the past decades several promising methods
have been proposed. Many of these methods can be
subsumed under the term dimensionality reduction:
The aim is to find a low-dimensional representation
which captures important characteristics of the orig-
inal high-dimensional state space. Some of the most
prominent methods are Principal Component Anal-
ysis (PCA) (Pearson, 1901), Self-organising maps

(SOM) (Kohonen, 1982) and Locally Linear Embed-
ding (LLE) (Roweis and Saul, 2000). All of these
methods have been widely studied and extended in
several ways1.

In this paper, we investigate an unsupervised, bi-
ologically inspired learning paradigm and its appli-
cation to representation making and recognition of
a humanoid robot’s postures. Slow Feature Anal-
ysis (SFA), the learning algorithm presented in this
paper, originates from the domain of theoretical biol-
ogy and was developed in order to find a method for
learning and extracting invariances from visual data,
applying the principle of temporal slowness. The key
assumption of this principle is that high-level and ab-
stract features hidden in the input signal vary slowly
over time. However, the slowness principle must not
be confounded with low-pass filtering, for the lat-
ter operates locally, while SFA takes the whole input
space into account, thus integrating global informa-
tion.

SFA is able to operate on high-dimensional data,
even from different sensory modalities, and adapts to
small as well as to large training data sets. It is based
on the generalised eigenvalue problem, for which fast
and reliable algorithms exist, facilitating its efficient
implementation and its application in real-time or at
least in a batch processing manner. Finally, suitable
methods for the analysis of the algorithm’s solution
can be given, for the solution is available in a com-
pact and closed form.

In the first instance, it could be shown
that temporal slowness is a fundamental learn-
ing principle, and that the application of SFA
to visual data yields structures that resem-
ble cells found in the primary visual cortex
and the hippocampus (Berkes and Wiskott, 2002,
Franzius et al., 2007). Beside its biological founda-
tion, the algorithm’s general capability to detect and
extract hidden states and driving forces from non-
stationary time-series (Wiskott, 2003a) as well as its
use for pattern recognition (Berkes, 2006) have been

1See e.g. (Fodor, 2002) for a survey of dimensionality re-
duction methods.



investigated.

In recent papers, we successfully applied SFA to
different sensory qualities for the detection of simple
robot postures (Spranger et al., 2009) on one hand,
and increased the reactivity of a biped gait pat-
tern by using SFA as a filter structure on the other
hand (Höfer and Hild, 2010). In this paper we ex-
tend the application of SFA to a more complex task
related to representation making and dimensional-
ity reduction. More precisely, we employ SFA to
extract signals, which distinguish several presented
postures and serve as a compact representation of
the sensory state space. Additionally, we point out
that SFA yields a transformation function in a com-
pact form, facilitating the analysis of the obtained
signal. In consequence, we propose a method to
evaluate how changes in the sensory input data af-
fect the obtained posture detector signals by relat-
ing SFA components to quadrics, which are used in
robotics to model invariants in motion and behaviour
(Selig, 2005). Based on the relation between SFA
and quadrics we propose how SFA components can
be used for guided exploration of the state space.

The outline of this paper is as follows: We be-
gin with a brief introduction to SFA, illustrating the
algorithm and its mathematical foundations. Subse-
quently, we shift the focus to quadratic forms and
their relation to SFA. We derive a simple and effec-
tive method based on quadrics, that allows to analyt-
ically relate input and output of an SFA component.
Next, we present an application of SFA to representa-
tion making and recognition of a humanoid robot’s
body postures. The obtained results are examined
with the quadric-based analysis technique. We con-
clude this paper with a summary of the obtained
results and give insights into future work.

2. Methods

2.1 Slow Feature Analysis

Slow Feature Analysis (SFA) is an unsupervised
learning algorithm which aims to extract slowly vary-
ing features from a multi-dimensional input signal
(Wiskott, 1998, Wiskott and Sejnowski, 2002). It
solves a particular optimisation problem related to
temporal slowness which can be stated as follows:
Given a potentially multidimensional input signal
x(t) = [x1(t), .., xN (t)]T , N being the dimensionality
of the input, the algorithm searches for input-output
functions gj(x), j ∈ J that determine the output of
the system yj(t) := gj(x(t)). The objective function
can be stated as

∆(yj) := 〈ẏ2j 〉t is minimal (1)

where 〈·〉t denotes the average over time and ẏ is the
derivative2 of y. For convenience, we usually omit
the time index indicated in parentheses.

Since the equation states the intended learning
problem of temporal slowness, ∆(yj) is minimal if yj
varies slowly over time. Three additional constraints
are formulated in order to prevent trivial solutions:

〈yj〉t = 0 (zero mean) (2)

〈y2j 〉t = 1 (unit variance) (3)

∀i < j 〈yiyj〉t = 0 (decorrelation) (4)

Without equation 3 every constant signal would eas-
ily fulfill the objective 1, so the output signal is forced
to carry information. Equation 4 requires the set of
output functions to be decorrelated; otherwise the
signals would simply reproduce each other. It also
induces an order on the output signals, i.e., the first
signal y1 will be the slowest one, y2 will be less slower,
etc.

The above stated optimisation problem is in gen-
eral hard to solve. Therefore, SFA simplifies the
problem by constraining the input-output functions
gj to be linear combinations of a finite set of ba-
sis functions. So, the input-output function g =
[g1(x), ..., gJ(x)]T is defined as the weighted sum of
K basis functions h = [h1, .., hk]T :

yj = gj(x) :=

K∑
k=1

wjkhk(x). (5)

In the linear case (called SFA(1) or linear SFA) no
specific basis functions are used and the input-output
functions compute as the weighted sum of the input
data. However, in order to deal with nonlinearities
in the input data, the basis functions are chosen to
be a polynomial, usually quadratic, expansion of the
input. This leaves only the weight vectors wj to be
learnt. A polynomial expansion up to degree two,
prepended to a linear SFA is referred to as SFA(2)
or quadratic SFA. Note that this technique is similar
to the kernel trick, for the expanded signal serves as
a basis for a finite dimensional subset of the vector
space of polynomials.

Letting x̃ be the original input data or in case of
SFA(2) the expanded data, respectively, the parame-
ters are learnt by applying SFA to the mean centered
signal x = x̃ − 〈x̃〉t. Obviously x automatically ful-
fills constraint 2, so x is inserted into the objective
function 1 and into equation 4:

∆(yj) = 〈ẏ2j 〉t = wT
j 〈ẋẋT 〉twj =: wT

j Awj (6)

and

〈yiyj〉t = wT
i 〈xxT 〉twT

j =: wT
i Bwj . (7)

2The derivative is approximated by a finite difference
ẋ(t) := x(t) − x(t − 1) for we are dealing with discrete sig-
nals.



For constraint 3 can be integrated into equation 1,
we get the new objective function

∆(yj) =
〈ẏ2j 〉t
〈y2j 〉t

=
wT

j Awj

wT
j Bwj

. (8)

The solution to this problem is given by the gen-
eralised eigenvalue approach as known from linear
algebra,

AW = BWΛ, (9)

letting W = [w1, . . . , wn] be the matrix of the gener-
alised eigenvectors and Λ the diagonal matrix of the
corresponding eigenvalues λ1, . . . , λn. It was shown
in (Berkes, 2006) that the orthonormal set of eigen-
vectors sorted in descending order accordingly to
their corresponding eigenvalues yields the weight vec-
tors wj .

What makes SFA an unsupervised learning algo-
rithm is the fact, that the learnt weight vector set
will generalise well to an unseen input signal, as long
as the training signal shares most of the character-
istics of the target input signal. Applying a trained
SFA(2) to new data simply consists in the multipli-
cation of the nonlinearly expanded, mean centered
input signal by the SFA weight matrix W, therefore
being computationally less demanding than the pre-
viously described exact solution of the optimisation
problem. However, SFA(2) does heavily suffer from
the curse of dimensionality. If an extremely high-
dimensional input signal is provided, the polynomial
expansion results in a hardly manageable set of basis
functions. In order to deal with this problem, SFA
can be applied successively in subsequent or parallel
networks of SFA units, with each unit passing only
a limited amount of slowest components to the next
one. Moreover, the successive application of several
SFA units allows to extract features of higher poly-
nomial degree. In this paper, we confine ourselves
to the subsequent (non-hierarchical) application of
several SFA units with a restricted amount of passed
components and call this method iterated SFA, in-
dicating the iteration from which a slowest compo-
nent results in brackets, e.g., y1[2] denotes the slow-
est component obtained after two SFA iterations.

2.2 Quadratic Form and Quadrics

As shown in (Berkes and Wiskott, 2006) every
input-output function yj(t) = gj(x(t)) learnt by an
SFA(2) can be formulated in a general inhomogenous
quadratic form as given by the following equation:

yj = c+ fTx +
1

2
xTHx, (10)

with c ∈ R, f ∈ RN and H ∈ RN×N being derived
from the previously mentioned weight vector wj .

Restraining yj(t) to a fixed real value µj and bring-
ing this value to the right hand side of the equation
results in a homogenous quadratic form:

0 = (c− µj) + fTx +
1

2
xTHx. (11)

Considering the null space of this quadratic form,
i.e., all the coordinates satisfying equation 11, results
in an N -dimensional hypersurface, called quadric.
In the case of N = 2, for instance, the possible
surfaces correspond to conic sections, whose shape
depends on the coefficients f , H and (c − µj). A
quadric derived from an SFA(2) component may also
be called an invariance manifold, a term which has
already been used in the original SFA publication
(Wiskott, 1998).

In order to characterise a quadric hypersurface and
calculate its points analytically, the quadric defini-
tion of equation 11 is normalised through elimination
of the mixed terms by means of a PCA. For online
exploration of the quadric surface, e.g., a gradient
descent based method can be applied: The idea is
to start with a point lying on the quadric surface,
then execute a small random or directed movement
and finally retract following the gradient towards the
quadric surface.

Since it is not possible to visualise the complete
quadric surface for dimensionality N > 3, in general,
not all inputs of an SFA component can be evalu-
ated at the same time. However, a three-dimensional
subset of the input vector can be selected, fixating
the remaining input variables to reasonable constant
values. By subsequent application of this method to
different subsets of the input vector, the unfolding
subquadrics can be examined and the relationship
between the inputs and the SFA component becomes
evident.

As mentioned in the previous section, several SFA
units can be applied in a row in order to extract fea-
tures based on polynomials of higher degree. It is
worth to mention, that the proposed analysis is also
applicable to components resulting from an iterated
SFA. For instance, a component from the second it-
eration of an SFA can be expressed by a polynomial
of degree four. Though, the resulting geometrical
surface does no longer correspond to a quadric, but
to some structure of higher degree. However, the
components can still be analysed, but in order to
calculate the null space for a component resulting
from a iteration higher than two (consisting of poly-
nomials of degree higher than four) only numerical
approaches like the proposed gradient-based method
are applicable.

We will point out in the result section, that the
analysis of quadrics proves useful in the case of pos-
ture detector signals extracted by SFA, for it enables
us to characterise the sensory state space of the robot
that is classified by SFA as a specific posture.



3. Experiments

Figure 1: Picture of a robot from the A-series with
schematic representation of the positions and direc-
tions of the acceleration sensor boards.

We confined ourselves to iterated quadratic SFA.
The number of iterations was varied from one to five,
the number of slowest components passed to a sub-
sequent unit was set to 48. We observed that in-
creasing the values of these parameters, particularly
the number of iterations, results in overfitted and de-
generate slowest components which is in agreement
with the theoretical analysis of optimal slowest com-
ponents (Wiskott, 2003b). Additionally, the values
of the slowest components were cutoff at [−2, 2] after
each iteration in order to prevent high peaks which
may arise due to the unit variance constraint (equa-
tion 3). For our experiments the SFA implementa-
tion available from the open source Modular Toolkit
for Data Processing (MDP) (Zito et al., 2009) was
used.

3.1 Embodiment

For our experiment we used robots of the A-series
platform (Figure 1), which was developed at our lab-
oratory for researching basic motion capabilities of
humanoids . The robot platform features several pro-
prioceptive sensors which are distributed across the
body as well as a camera in the head. It exhibits 21
degrees of freedom, 19 in the body, including elbow,
hand, hip, knee and foot joints, as well as a pan-and-
tilt unit for the camera. Eight microprocessor boards
are located on the hips, arms and shoulders, featur-
ing a two-axes acceleration sensor each. Each board
controls up to two actuators, while communicating
via a shared system bus, that integrates incoming
and outgoing data from the sensors, the motors and
a PDA, which is attached to the back of the robot to
process visual information provided by the camera.

3.2 Training Data

In our experiments a 16-dimensional input signal
consisting of the acceleration sensor values was used.
All sensor values were normalised to [−1, 1]. The
training data consisted of a collection of sequences
with an overall length of 120 seconds. In the recorded
sequences, the robot executed different behaviours,
namely laying down to the back and the front, stand-
ing up, doing the splits and squatting. The static
postures were held for a longer period of time com-
pared to the fairly swift transitions from one posture
to another. The splits and squatting postures are
more difficult to detect, for they affect less sensors
than standing or lying. Selected acceleration sensor
signals recorded during the aforementioned sequence
can be seen in Figure 2.

4. Results

In Figure 3 the five slowest components from the
second SFA iteration are depicted. In order to de-
cide which two components form the best repre-
sentation of the sensory state space, two numer-
ical measures were used: The silhouette measure
(Rousseeuw, 1987) was used to evaluate the dis-
cernibility of the postures, while procrustes analy-
sis (Li et al., 1995) indicates the (linear) dissimilar-
ity of the original data with the results. The values
for the best SFA component pair (y2[2], y5[2]) are
listed in Table 1. Examination of all the compo-
nents from the second SFA iteration shows, why the
pairing of these two components yields the best re-
sult: y1[2] is a merely binary component, extracting
the postures standing and lying, rather irrespective
of the side on which the robot is lying. y2[2] takes
this difference into account and additionally exhibits
a negative peak when the robot is doing the splits
at t = 10150. While y3[2] resembles the slowest
component y1[2] with additional strong peaks dur-
ing posture changes, y4[2] is most sensitive to pos-
ture changes. Finally, y5[2] is the only component
exhibiting a remarkable peak at t = 8180, which cor-
responds to the squatting pose, therefore being nec-
essary for the salient distinction of all the available
postures. Figure 4 shows a two-dimensional visuali-
sation of the reduced state space constituted of the
aforementioned SFA component pair. Each dot rep-
resents the output of the SFA components given a
sensory input vector from the training data. The sen-
sory states that correspond to static postures were
highlighted manually and pictures of the respective
poses were added for convenience. The yellow dots
represent intermediary states, i.e., transitions from
one posture to another. It can be clearly seen that
the different postures are well distinguishable and
separated in the SFA state space. Another interest-
ing observation is that the trajectories of the transi-
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Figure 2: Selected acceleration sensor signals consisting of all the sensors located on the robot’s left body
part. The signals exhibit high noise which may be ascribed to the high sensitivity of the sensors as well as
transmission errors.
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Figure 3: The five slowest components obtained after two SFA iterations.



Figure 4: A two-dimensional visualisation of the postures executed by the robot and the most salient slowest
components. The x-axis corresponds to y2[2], the y-axis to y5[2]. Intermediary states are indicated by yellow
dots.

tions are reasonable with respect to the intermediary
states, depicted by the yellow dots: For instance, the
sensory states illustrated by picture number 8 in the
bottom right corner of Figure 4 are reached while the
robot stands up from the ground. This is owed to
an advantageous side effect of the temporal slowness
objective: The signals do not only capture high-level
semantic features, but are also smooth and deprived
from noise.

4.1 Comparison with PCA and LLE

In order to assess the obtained SFA results, PCA
and LLE (with k-neighbourhood size set to k = 91)
were applied to the training sequence. The result-
ing dimensionality reductions were compared using
the aforementioned measures. As may be expected,
PCA and LLE preserve higher similarity with the in-
put data, as being reflected in the lower procrustes
value. The high dissimilarity of the SFA compo-
nents with the input data is mostly owed to the fact
that a quadratic and thus nonlinear variant of SFA
was used. Though, this dissimilarity is not necessar-
ily disadvantageous, quite the contrary: Due to the
slowness objective, the most salient robot postures
are pulled apart in the resulting state space, facili-
tating a better discernibility of the different postures.
Besides, the postures are also much more locally con-
centrated in the SFA result. This explains why SFA
exhibits the highest silhouette value. As observed
before, the slowness principle makes the trajectories
between the different poses look smooth, which is not
the case for PCA and LLE.

SFA PCA LLE
Silhouette 0.71 0.63 0.56
Procrustes 0.71 0.06 0.36

Table 1: Silhouette and procrustes measure results
for SFA, PCA and LLE.

4.2 Analysis with quadrics

As proposed earlier, quadric analysis can be used to
learn more about the characteristics of the extracted
SFA components. In particular, it gives new insights
to the response of the components when being ap-
plied to unseen sensory data. Moreover, it shows
that the obtained SFA components constitute be-
havioural manifolds, which represent the robot’s sen-
sory states that belong to a posture. In this paper we
present the results for the second slowest component
from the first iteration y2[1]. This component shows
high resemblance to its counterpart in the second
iteration, an observation which is underpinned by
their correlation coefficient ρ(y2[1], y2[2]) = −0.96.
In comparison to y2[2], the component y2[1] from
the first iteration is not as smooth and has an op-
posite sign. We choose the standing posture for our
analysis. Thus, we set µ2 = 0.915 which is the mean
value of y2[2] while the robot executes this posture.
In order to visualise the quadric three-dimensionally
we cannot leave all sensor inputs variable, but we
select three sensors located on the left part of the
upper body: the sensors in sagittal direction on the
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Figure 5: The resulting quadric for y2[1] (µ2 = 0.915), obtained by the proposed gradient descent method and
an analytical calculation, respectively. The quadric represents the simulation of movements of the left arm in
a standing posture. Geometrically, the result set corresponds to a hyperboloid of one sheet.

shoulder (SLx sa) and the arm (ALx sa) as well as
the arm sensor which is aligned perpendicular to the
transversal plane of the robot (ALy pe), i.e., the axis
pointing from the robot’s head down to its feet. All
other sensors are fixated to their mean value while
the standing posture is executed. The sensors have
been chosen for y2[1] exhibits similarity with ALx pe

(ρ(ALy pe, y2[1]) = −0.83), as well as for the fact
that y2[1] distinguishes whether the robot is lying
on its front or back side. The following analysis will
show that also the sagittal sensors have a remarkable
influence on the component.

In Figure 5 the resulting quadric, a hyperboloid of
one sheet is depicted. Figure 5a shows the quadric
surface which was calculated using the previously
proposed gradient based method, constraining the
input values to [−1.5, 1.5]. In fact, this value range
is fairly ample, since the sensors do not exceed ±0.6
for static postures, due to their calibration. Figure
5b depicts the analytically derived quadric surface.

First, we take a look at the relationship between
the two sagittal sensors. These sensors are strongly
coupled, since they have approximately the same
value if the morphology of the upper body is not
changed, i.e., if the arm is in its basic position, per-
pendicular to the transversal plane. As can be seen
when considering only the sagittal axis and therefore
fixating ALx pe to its mean value for the standing
posture, the two sensors are geometrically coupled
with each other by an ellipse. Interestingly, the posi-
tion of the arm does indeed have an impact on y2[2]:
If the robot moves its arm up to the front, using its
pitch motor, it has to lean its upper body to the
back in order to stay on the quadric surface, keep-

ing the value of y2[2] at µ2, respectively3. Though,
moving the arm backwards does not have an effect
on y2[2]. Nevertheless, the observations imply that
SFA makes use of the sagittal arm sensor in order
to encode the standing posture; as indicated in our
recent paper (Spranger et al., 2009), it is most prob-
able that the dependence on the sagittal arm sensor
can be reduced if the training data consists of more
dynamical data including arm movements.

When looking at the pairs consisting of one of the
sagittal sensors and the perpendicular sensor, the ge-
ometrical shapes correspond to hyperbolas. It can be
seen that the coupling between these sensors is not as
strong as the previously examined sensor pair: The
perpendicular arm sensor is insensitive with respect
to the sagittal shoulder sensor, thus allowing free
movement of the arm. Moreover, the quadric sur-
face points formed by the two sensors both located
on the arm are practically not relevant, for most of
the indicated sensor values are not reachable in terms
of the robot’s actual morphology.

5. Conclusion and Outlook

We have shown how Slow Feature Analysis, an un-
supervised learning algorithm based on the princi-
ple of temporal slowness, can be applied to sensory
data from a humanoid robot, extracting components
which encode the robot’s body postures. The pre-
sented components are suitable not only for classi-
fication of the robot’s postures, but also provide an
appropriate dimensionality reduction, exhibiting rea-

3However, the possible side effects on the remaining sensors
when moving the upper body would have to be taken into
account, too.



sonable transitions and trajectories through interme-
diate states. Moreover, we have presented a straight-
forward analysis technique based on quadrics, that
allows for further characterisation of the relationship
between the input and the extracted features. Even-
tually, we have demonstrated, how this technique can
be used for the reconstruction of a manifold that SFA
categorises as a specific posture.

Notwithstanding, further investigation concerning
the applicability of SFA to larger training data sets,
as well as its generalisability is necessary. Addition-
ally, the proposed gradient based approach should
be used to explore the quadric and the correspond-
ing subset of the sensory state space in a directed
manner. The result of this exploration could then
serve as new training data for the SFA units, i.e., for
further adaptation of SFA components.

Future work will mainly concentrate on the appli-
cability of SFA to the newly available successor of the
A-series platform, the Myon robot. This platform is
equipped with a significantly higher amount and ad-
ditional modalities of sensors, e.g., current and force
sensors. Moreover, the concept of life-long learn-
ing was introduced into the new platform, enabling
the robot to gather experience in form of sensory
data which may serve as training data for advanced
learning algorithms like SFA. We believe that the in-
creased amount of diversified sensory data proves to
be useful for the extraction of even more salient and
robust high level abstract features by the SFA.
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the generation of the employed sensory data. This
work has been supported by the European research
project ALEAR (FP7, ICT-214856).

References

Berkes, P. (2006). Temporal slowness as an
unsupervised learning principle. PhD thesis,
Humboldt-Universität zu Berlin.

Berkes, P. and Wiskott, L. (2002). Applying Slow
Feature Analysis to Image Sequences Yields a
Rich Repertoire of Complex Cell Properties. In
Dorronsoro, J. R., (Ed.), Proc. Intl. Conf. on
Artificial Neural Networks - ICANN’02, Lec-
ture Notes in Computer Science, pages 81–86.
Springer.

Berkes, P. and Wiskott, L. (2006). On the analysis
and interpretation of inhomogeneous quadratic
forms as receptive fields. Neural Computation,
18(8):1868–1895.

Fodor, I. (2002). A Survey of Dimension Reduction
Techniques. Technical report.

Franzius, M., Sprekeler, H., and Wiskott, L. (2007).
Slowness and sparseness lead to place, head-
direction, and spatial-view cells. PLoS Compu-
tational Biology, 3(8):e166.
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